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ABSTRACT

This article presents the vibration of a singleclayd graphene sheet resting on an elastic foumdagiousing
nonlocal first-order shear deformation theory. Eiues of motion for a simply-supported graphenecsiage obtained via
a nonlocal shear deformation theory. Effects oflocal parameter as well as length of graphene shesde numbers,
three-parameter of foundation and thermal paramaterdiscussed. A comparison example is preseateshdw the

accuracy of the present results.
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INTRODUCTION

Vibration analysis of nanoplates using the nonldlcebry of elasticity [1-4] is the main subjectresearch works
in recent years. The single-layered graphene q$6%S), or double-layered graphene sheet (DLGS)nulti-layered
grapheme sheet (MLGS) has high resistance and eimcpperties. So, all of them are used for manufax of many
devices such as oscillators, clocks and sensocegvBakhaee-Pour et al. [5] presented vibratiatysis of SLGSs by
using a molecular structural mechanics method. lRRnacind Phadikar [6] studied the nonlocal vibratiérSL and DL
nano-plates via classical plate theory (CPT) amst-irder shear deformation plate theory (FSPT)sakinet al. [7]
investigated the vibrational behavior of a SLGS F@PT and differential equations are solved by gugianeralized
differential quadrature method for various boundaogditions. Pradhan and Kumar [8] presented theation analyses of
an orthotropic SLGS using the CPT and solved thegong equations of motion by using differentiabdrature method.
Satish et al. [9] presented thermal vibration asedyof orthotropic nanoplates based on nonlocalrearm mechanics for
small scale effects. Shen et al. [10] used Gal&ykinethod to present the vibration analysis of aGSLbased

nano-mechanical sensor via nonlocal Kirchhoff ptaeory.

Most of nanostructures are resting on two-paranmedéstic foundation. Ansari et al. [11, 12] studibd vibration
analysis of a MLGS using the FSPT according to \Winkype foundation. Murmu and Adhikari [13] invigstted the
nonlocal vibration of bonded double nanoplate systaccording to Winkler-type foundation. Wang et[&#l] used the
nonlocal theory to derive the nonlinear governimgations for double-layered nanoplates subjectetbtio different
boundary conditions according to Winkler-type foatidn. Behfar and Naghdabadi [15] presented naate sdbration
analysis of a MLGS embedded in elastic medium. Cleieal. [16] investigated nonlinear vibration afrinated plates
resting on a nonlinear elastic medium. Liew et[&F] proposed a continuum-based plate model toysthd vibration

behavior of MLGSs that are embedded in an elasaitir
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Pradhan and Murmu [18] employed nonlocal plate themd used DQM for vibration analyses of nano-SEGS
embedded in elastic medium. Pradhan and Kumar pi€dented vibration analysis of orthotropic SLGSbedued in

Pasternak’s elastic medium.

The natural vibration frequency of a SLGS resting @ two-parameter Pasternak’s foundation [20-24]
is investigated in the present article. The noriletasticity theory via the first-order shear defiation theory is presented.
The differential governing equations are derived #reir solution is analytically presented for egly-supported SLGS.
The effects of nonlocal index, two-parameter fodimataon the natural vibration frequencies are thated. A comparison

with the literature is presented and benchmarklt®ave plotted for sensing the effect of all upadameters.

BASIC EQUATIONS

Let us considen SLGS resting on elastic foundation and subjetdashiform load.The SLGS is of length,
width b and uniform thicknesB as shown in Figure.TThe SLGS is made of a homogeneous isotropic aeadly elastic

material with Young’'s modulus of elasticigj, Poisson’s ratio, shear modulué and material density.
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Figure 1: A Continuum Plate Model of a Single-Layeed
Graphene Sheet Resting on Elastic Foundation

The displacements; of a SLGS according to the FSPT are expressed as

u(x,y,z,t) =ulx,y,t) + zy(x,y,t),
uz(x‘%z't)Zv(x‘y.t)+z¢(x:y'f). (1)
uz(x,y,2,t) = w(x,y,t),

in whichu,, u,, andu; are the displacements in tlkey, andz directionsu andv are in-plane displacements
while w denotes transverse displacement (deflectign)and ¢ are rotational displacement about and x-axes,

respectively.

The strain-displacement equations of elasticitygiven by

ou o
Exx J ox l I ox l ¢+
ov o¢ Vyz dy
& = — -— = =
{ yy} ay +z ay ) &, =0, {yxz} aw (* (2)
SO IO B PN ) Vo

ax = dy ox 0y

The constitutive equations of an isotropic SLGSoading to the nonlocal elasticity can be expressed

— VZ
O — EV20,, E oMl vl (Exx Oyz = ¢ ZUyz Vyz
Oyy — EVZO' T 1 [‘V 1 {gyy}' Oxz —§VZ0xy ¢ = GVazy, (3)
vy yy Ory — EV20,, Vey
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whereé = (ae,)? represents the nonlocal index in which the paransetienotes an internal characteristic length

ande, denotes a material constant determined experintgntal

Hamilton’s principle is used here to obtain thea@ns of motion as

h/2 a2 i
f {f h/2 fn (pa—;c?ui + O4x88xx + 0yy 8y + 0y 8Vyy + 04,6V, + ayZSyyz) ddz

[, (¢ = Re)sw dn}dt =0, (4)
wheregq is the transverse distributed load dhds thetwo-parameter Pasternak’s foundation
Ry = (Ky — K,V 5w, ®)

in which?7? is the Laplaciank; is the linear Winkler's modulus ankl, denotes Pasternak’s (shear) foundation

modulus.

Integrating the displacement gradientsejp by parts in Eq. (4) to obtain the governing equaiin the form
(settingg = 0)

ON JdN F]
ax t a;y - 10 atz +h Btlf'
"’;ny + aN;y - IO 6t2 +h th ’
Sy 2 (K, - KZVZ)W LY, (6)
61:% aMxy 0= 11 atz z+ I, Ztlf’
61;%"_ ar;y Qy = 11 at2 2+ 12 6t2'

wherel; denote mass moments of inertia defined by

h/2
L= }{/2 pzldz. 7

and N;;, M;;, and Q; denote basic components of stress resultants,sstasgples and shear stress resultants.
They can be obtained by integrating Eq. (3) overttfickness of the SLGS as

{N;j, My, Q:} = fh,{/zz{aij,zai]-, koy,}dz, i,j=x7, 8)

k is the transverse shear correction factor. Af@ngi Eqs. the above stress resultants can be nvittteerms of

the displacements as

(2
— V2N, 1 v 01| ox
Eh ov
yy_EVZNyy = 1-v2 v 1 1(—)1/ 5 ’ (9)
ny_évaxy 00 "2 | v | Ou
dx  dy
%
M,, — EV2M,, 1 v 0 ox
a
Myy =SV Myy ¢ =D [V L 1(_)v \ % ’ (10)
Mxy - EVZMxy 00 2 1|9¢ an
—“ 4=
ox ay
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ow

Qy —¢V?Q ¢+%
{Qy ~gree ) =M, pof (11)
X X E
whereD = 1zf1h—3v2) represents bending rigidity of the SLGS.

The substitution of Egs. (9)-(11) into Egs. (6)lggethe following nonlocal partial differential eafions of motion

in terms of displacements

D(5E+ gt 75 = 57 (L z + 1 5E) a2)
D( 5+ st 50 = R =7 (gF +h 5E) (13)
kGh (2L + 2+ 72w) = (1= EV) (K — Ko V2w = Io(1 = 72y, (14)
D (%‘f#zﬂ:;fy +121";27‘f) —kGh(p+2) = 1 - 7)) (L 22+ L, 2Y), (15)
D(%%+l%::£+§7f)—k6h(¢+%)=(1—5[72)(11%+12‘227f) (16)

NONLOCAL VIBRATION FREQUENCIES

The determination of natural frequencies is of améntal importance in design of many nano-strusture

The assumed form of displacement components isespd as

{w ¥} {hu”, 7} cos(Ayx) sin(uny))

{ w } = hw* sin(A,,x) sin(u,y) ¢ el“t, (17)
{v, ¢} {hv*, ¢*} sin(A,,x) cos(i,y)

wherew represents the natural frequency for the SLEESy*, w*, ¥* and¢™ are arbitrary parameters;

Am = mm/a andy,, = nm/b in whichm andn are the wave numbers; ang v —1.

The substitution of the solution given above injoi&ions of motion, for constant density, yields:
— 3
D (% + 750w + 57 DApv” = B 02 [1 4 £ + D, (18)

— 3
DA’ + D (T + i) v = B0 [+ E (G + D], (19)

kGh(A%, + p2)w* + [1 4+ &A%, + wi) 1Ky + (A7, + ui) K, lw*

+kGAnY* + kGupd® = phw?®[1 + E(A5, + ) Iw’, (20)
— 3

KGh? dyw” + D (R + 22 12) + KGR Y + 22 DAt = 2 w?[1 + £, + kDY, (21)
— 3

KGR W™ + 22 Dapttp” + [D (523 + 12) + kGh| ¢ = 2o w?[1 + £(2%, + 11", (22)

The above equations of motion may be written imteof displacement parameters, y*, andg* only as
([P] — w?[RD{X} = {0}, (23)
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where{X} = {w*,y*, ¢*}T is the solution vector. The non-vanishing elemarftthe symmetric matricef®] and

[R] are expressed as:
Py = kGh* (A%, + p3) + R*[1 + E(A5, + pa)] Ky + (A5 + pi) Ko,
Py, = kGh2 A, ",
Pyz = D (A3 + =2 u2) + kGh,
Pz = kGh*pun g7,

1

Py3 = %Dlm#n'

Py =D (1;—”/1311 + uﬁ) + kGh,
Ry = ph*w?[1 + (A5, + ui)],

3
Ry, = R33 = %wz[l + f(lg‘n + #721)] (24)

The frequency equation for the SLGS is given biirsgt[P] — w?[R]| = 0 to get

Asw® — Ayt + Ajw? — Ay =0, (25)

in which

Ay = Py, (Py1 P33 — PR) — Piy(PiPs3 — Pi3Py3) — Pys(Py1 Py — PioPy3),

A; = R;1(Py3P33 — PX) + Ryy (P11 P33 — PA) + Ryy(Py1Pyy — PE),

A, = [P11R55 + (Pyy + P33)R111R,,,

As = R4 R3,. (26)
NUMERICAL RESULTS AND DISCUSSIONS

In this section the properties of graphene sheetcansidered as [6]: modulus of elastidity= 1.02 TPa,
Poisson’s ratio v=0.16 and material densityp = 2250kg/m3. It is assumed, except otherwise stated,
thata = b = 10 nm andh = 0.34 nm. Here, the fundamental vibration frequenay £ n = 1) is firstly compared with
the corresponding ones in the literature [6, 8,1d], For this purpose, the frequency ratib=£ wN“/w") is considered
wherewN" represents the ftrequency calculated using nohtbeary whilew" represents the ftrequency calculated using
local theory. The comparison of vibration frequemagio of nonlocal square SLGS is reported in Tahlén excelent

agreement is appeared and the present ratio gathe as those presented in the literature.

Now, let us consider additional examples to pub ievidence the effect of length the foundation parameters
K, and K, and the nonlocal index dhe vibration of the present SLGIBis to be noted that, we can get the local thérma

vibration of the SLGSs by settigg= 0 in the preceeding equations.
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Table 1: Comparison of Fundamental Vibration Frequecy Ratio @ of

Nonlocal Square SLGS ¢ = b = 10 nm and h = 0.34 nm)

& (nm?) |Present] [6] [8] | [10] | [19]
0 1 1 1 1 1
1 0.913860.91390.91390.91390.9139
2 0.846730.84670.8466 0.8467 0.8468
3 0.792510.79250.79260.79250.7926

Figure 2: Fundamental Frequency Ratio of a SLGS V8lonlocal
Index and its Length (p = 10nm, h = 0.34nm, K, = 0, K, = 0)

Figure 3: Natural Frequency Ratio of a Square SLGSY/s Nonlocal

Index (@ = b = 10Nm, h = 0.34Nm,m = 1, K, = 0, K, = 0)

Figure 4: Fundamental Frequency Ratio of a SquarelS5S Vs Nonlocal
Index and Winkler's Parameter (h = 0.34nm, a = b = 10nm, K, = 5)

Impact Factor (JCC): 3.8967

NAAS Rating.30
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098 %

Figure 5: Fundamental Frequency Ratio of a SquarelS5S Vs Nonlocal
Index and Pasternak’'s Parameter i = 0.34 nm,a = b = 10 nm, K; = 10)
Figure 2 shows the fundamental frequency rétigs nonlocal index for different values of the length of the
SLGS without elastic foundatiork{ = K, = 0). The frequency rati@ increases aa increases and as decreases.
The maximum fundamental frequency ratio occurs when0. Figure 3 shows the naturah(=1 andn = 1,2,3,4)
frequency ratio® vs nonlocal inde¥ of the SLGS without elastic foundatiok,(= K, = 0). The natural frequency ratio

@ increases as decreases.

Figures 4 and 5 show the fundamental frequency ftiof a square SLGS vs nonlocal indé&xor different
values of Winkler's parametéf; and Pasternak’s parametéy, respectively. Once again, the fundamental frequeatio

@ increases a§ decreases. The maximum frequency ratio occurs wWher0 and for all values oK; and K,. The

frequency ratio is increasing with the increas®irfikler's parameterk; and Pasternak’s parameféy.

Ky =12

Figure 6: Fundamental Frequency Ratio of a SquarelSGS Vs
Pasternak’s Parameter f = 0.34nm,a = b = 10 nm, § =1)

)

Figure 7: Fundamental Frequency Ratio of a SquareSGS Vs
Winkler's Parameter (h = 0.34 Nm,a = b = 10 Nm, ¢ =1)
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The plots of fundamental frequency rafioof a square SLGS vs the elastic foundation paremm&{ andK, are
appeared in Figures 6 and 7. The frequency rafiidispendent oK, for small values ofK; . For constant values &f the
frequency ratio is increasing & increasing (Figure 6). Also, for constant valuéske the frequency ratio is rapidly

increasing a¥; increasing (Figure 7), especially in the rargj& K; < 14.
CONCLUSIONS

The nonlocal vibration frequencies of a single-tage graphene sheet resting on two-parameter Pakiern
foundation are investigated. The local-to-nonlogékation frequency ratios are compared well witle torresponding
results in the literature. The fundamental and natfrequency ratios are presented to serve ashipesaks for future
comparisons. It can be observed some novel phereofmam the discussion of the results. The resutisvary sensitive to
the variation of nonlocal index. The inclusion wbtparameter Pasternak’s foundation is very pronednThe maximum

frequency ratio occurs when neglecting the nonlowix.
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